SDCTIE GRACELI EM Relações de Maxwell

 

TEORIA GRACELI DOS ESTADOS FÍSICOS ESTRUTURAIS ESPECÍFICOS

TEORIA GRACELI DOS ESTADOS FÍSICOS ESTRUTURAIS ESPECÍFICOS


MARCA A CAPACIDADE FÍSICA ESPECÍFICA DAS ESTRUTURAS DE SE TRANSFORMAR, DE INTERAGIR, EMITIR RADIAÇÃO E TUNELAMENTO, ABSORVER, DE CONDUZIR ENERGIA, DE DILATAR-SE DE ENTRAR EM EBULIÇÃO [TEMPO DE INÍCIO E ACELERAÇÃO], 


SÃO ESTADOS CARACTERIZADOS PELAS ESTRUTURAS , ENERGIAS E OUTROS FENÔMENOS, E NÃO PELO MOVIMENTO DE ELÉTRONS.


CADA TIPO DE ESTRUTURA , DE MATERIAL, DE MOLÉCULA, ÁTOMOS, PRÓTONS, ELÉTRONS, NÊUTRONS TÊM SEUS ESTADOS FÍSICOS ESPECÍFICOS.


VEJAMOS O FERRO TEM CONDUÇÃO TÉRMICA E ELETROMAGNÉTICA DIFERENTE DO ALUMÍNIO, SE DILATA EM OUTRA VELOCIDADE, E ENTRA EM DILATAÇÃO E ENTRA EM OUTRO TEMPO,  ENTRA EM FUSÃO EM OUTRO TEMPO E VELOCIDADE.


COMO ENERGIA DE LIGAÇÃO DAS PARTÍCULAS E COESÃO DAS PART´CICULAS E MOLÉCULAS.



OUTROS FENÔMENOS ESPECÍFICOS QUE MARCA OS ESTADOS GRACELI ESTRUTURAIS SÃO



TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔ CAPACIDADES DE VIBRAÇÕES Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  







TEORIA QUÂNTICA GRACELI DA TRANSFORMAÇÃO NO SDCITE GRACELI

 ESTADO ESPECÍFICO GRACELI DA TRANSFORMAÇÃO E OUTROS FENÔMENOS.

TODA TRANSFORMAÇÃO PRODUZ ALTERAÇÕES EM NÍVEIS QUÂNTICOS EM TODOS OS FENÔMENOS, ENERGIAS, ESTRUTURAS E ESTADOS E FENÔMENOS, E CONFORME O SDCITE GRACELI.


FORMANDO ASSIM, O ESTADO QUÂNTICO TRANSFORMATIVO SDCIIE GRACELI.

E QUE O ESTADO TRANSFORMATIVO SDCITE GRACELI É  UM ESTADO ESPECÍFICO DA MATÉRIA, ELEMENTOS QUÍMICOS, ENERGIAS, E OUTROS.

COM AÇÃO SOBRE:


X


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  


X

 

TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll * D
          
X
 [ESTADO QUÂNTICO].


As relações de Maxwell são um conjunto de equações em termodinâmica que são produzidas a partir da simetria das segundas derivadas e das definições dos potenciais termodinâmicos. Essas relações são nomeadas em homenagem ao físico do século XIX James Clerk Maxwell.


Equações

A estrutura das relações de Maxwell é caracterizada pela igualdade entre as segundas derivadas de funções contínuas. Segue-se diretamente a partir do fato de que a ordem de diferenciação de uma função analítica de duas variáveis é irrelevante (teorema de Schwarz). No caso das relações de Maxwell, se a função Φ considerada é um potencial termodinâmico e  e  são duas variáveis naturais diferentes para esse potencial, escreve-se[1] (pelo teorema de Clairaut-Schwarz):

,

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

onde as derivadas parciais são tomadas com todas as outras variáveis naturais mantidas constante. Observa-se que, para cada potencial termodinâmico, existem n(n-1)/2 possíveis relações Maxwell, onde n é o número de variáveis naturais para esse potencial.

As quatro relações mais comuns

As quatro relações de Maxwell mais comuns são as igualdades das segundas derivadas de cada um dos quatro potenciais termodinâmicos, com respeito a sua variável térmica natural (temperatura T ou entropia S) e a sua variável mecânica natural (pressão p ou volume V). Aqui resumimos:

Para a energia livre de Helmholtz:

;

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Para a entalpia:

;

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Para a energia livre de Gibbs:

;

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


E para a energia interna:

.

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Os quadrados termodinâmicos (de Born) podem ser usados como um mnemônico para recordar e derivar essas relações. A utilidade das relações de Maxwell está nas quantificação de variações de entropia, que não são diretamente mensuráveis, em termos de quantidades mensuráveis como temperatura, volume e pressão.

Derivação

As relações de Maxwell são baseadas em regras simples de diferenciação parcial, em particular o diferencial total de uma função e a simetria para avaliação de derivadas parciais de segunda ordem.[2]

Relações de Maxwell gerais

O alistamento acima não encerra todas as relações de Maxwell. Quando outros termos de trabalho envolvendo outras variáveis naturais, além do volume, são considerados ou quando o número de partículas é incluído como uma variável natural, outras relações de Maxwell se tornam aparentes. Por exemplo, se tivermos um gás de um único componente cujo número de partículas N é também uma variável natural, então a relação de Maxwell para a entalpia no que diz respeito à pressão e ao número de partículas seria

,

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


em que  é o potencial químico. No que diz respeito à entropia e ao número de partículas seria

.

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Assim, para H=H(S,p,N) temos n=3 variáveis e n(n-1)/2=3 relações de Maxwell.

Outros potenciais





Em termodinâmica, a relação de Gibbs-Duhem descreve as variações do potencial químico associadas as diferentes componentes de um sistema. Ela é consequência direta da relação de Euler para funções homogêneas e se escreve para um sistema de  componentes[1]:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


sendo  o número de moles da componente i,  o potencial químico da componente i,  a entropia do sistema,  a temperatura o volume e  a pressão.



A Equação de Gibbs-Helmholtz segue a seguinte fórmula:


X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Sendo ΔG a variação da Energia Livre de GibbsT a TemperaturaP a Pressão e ΔH a Entalpia do processo.

Essa equação é aplicada em processos cuja entalpia é conhecida, permitindo facilmente obter-se a variação da Energia Livre de Gibbs em função da temperatura para um sistema cuja pressão é mantida constante.

Aplicação em Reações Químicas

Pode ser utilizada para gases ideais ou reais, possuindo aplicações nas áreas de QuímicaEngenharia Metalúrgica e Engenharia Química.

As aplicações típicas da equação são à partir da forma padrão o é a pressão padrão, já que valores de ΔG em uma determinada temperatura

são tabelados ou facilmente determinados experimentalmente.

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Integrando a reação por separação de variáveis obtêm-se a fórmula:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Essa equação permite o cálculo de qualquer variação de ΔG em qualquer temperatura desejada à partir do valor já conhecido.

Relação com a constante de Equilíbrio

O termo abaixo que surge na Equação de Gibbs-Helmholtz para uma isoterma:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Relaciona a Energia Livre de Gibbs com a constante de equilíbrio K, permitindo o desenvolvimento da Equação de Van't Hoff.




equação de Antoine é um tipo de semi-correlação empírica que descreve a relação entre pressão de vapor e temperatura de substâncias puras. A equação de Antoine é derivada da relação de Clausius–Clapeyron. A equação foi apresentada em 1888 pelo engenheiro francês Louis Charles Antoine.[1]

A equação

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde p é a pressão de vapor, T é a temperatura e AB e C são parâmetros constantes específicos para uma determinada substância.

A forma simplificada com C igual a zero é chamada de equação de August, em referência ao físico alemão Ernst Ferdinand August:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


A equação de August descreve uma relação linear entre o logaritmo da pressão e a recíproca da temperatura. Isso pressupõe uma entalpia de vaporização independente da temperatura. A equação de Antoine permite uma descrição melhorada, porém ainda inexata, da alteração da entalpia de vaporização com a temperatura.

A equação de Antoine também pode ser expressa com a temperatura explícita a partir de simples manipulações algébricas:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Intervalo de validade

Por não ser suficientemente flexível, a equação de Antoine não pode ser usada para descrever toda a curva depressão de vapor saturado, do ponto triplo até o ponto crítico. Por conta disso, vários conjuntos de parâmetros para uma única substância são comumente usados. Um conjunto de parâmetros para pressão baixa é usado para descrever a curva de pressão de vapor até o ponto de ebulição normal, enquanto um segundo conjunto de parâmetros é usado para o intervalo do ponto de ebulição normal até o ponto crítico.

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Comentários

Postagens mais visitadas deste blog

TEORIA GRACELI DOS ESTADOS FÍSICOS ESTRUTURAIS ESPECÍFICOS